\qquad

Force Problems

pts. due \qquad Use the 1-D Equations to find " a " where needed!

1. Know Newton's $\mathbf{3}$ Laws:

Newton's $1^{\text {st }}$ Law is the law of \qquad
Newton's $2^{\text {nd }}$ Law is the math equation $\mathrm{F}=$ \qquad
Newton's 3rd Law states for every action there is an \qquad and \qquad reaction.
2. You are pulling your little sister on a sled with a force of 56 N at a 35° angle. Find the x and y components of your force. (Make sure your calculator is in degree mode.)
3. Bill Nye the science guy has a mass (100 kg) twice that of his sister $(50 \mathrm{~kg})$. They both start from rest and accelerate at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$ for 5 sec .
a. Which one has a greater acceleration? \qquad
b. Which one needs a greater force to get to that acceleration? Explain!
c. If you apply the same force to a larger mass, what should happen to the acceleration?
4. It takes a force of 10.5 N to accelerate a 2.5 kg rock. What is the acceleration of the rock?
5. A rocket weighs $2.42 \times 10^{7} \mathrm{lbs}$ and the total force acting on the rocket is $2.5 \times 10^{7} \mathrm{~N}$.
a. Find the mass of the rocket.
b. Find the acceleration of the rocket. (ans. $2.27 \mathrm{~m} / \mathrm{s}^{2}$)
c. What velocity (in $\mathbf{m p h}$) will the rocket reach at the end of its 7 -minute launch? (ans. 2,133 mph)
6. Show how the units cancel and what you are left with when you divide a Newton by a kg.
\qquad Hour \qquad
7. A high jumper, falling with an initial velocity of $4.0 \mathrm{~m} / \mathrm{s}$ lands on a foam pit and comes to rest in a distance of 0.40 m . If the pit exerts a force of $-1,200 \mathrm{~N}$ on the jumper, (the negative means it is in the opposite direction of the jumper) what is the jumper's mass? Find a first! (ans. 60 kg)
8. Define weight: \qquad
9. How are mass and weight different?
10. Find the weight of an object in lbs that has a mass of 65 kg .
11. A person performing karate chops on a block of wood has their hand go from $13.7 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in 0.0021 seconds. The mass of the average forearm is about 0.7 kg . What is the force exerted on the hand by the block of wood? (ans. approx. -4,567 N)
12. A car moving initially at a speed of 50.1 mph and weighing 300 l lbs. is brought to a stop in a distance of 61.0 m .
a. Calculate the time required to stop. The a $=-9.8$! (ans. 5.45 sec .)
b. Calculate the force acting on the car. Why is it negative? (ans. approx. $-5,579 \mathrm{~N}$)
c. Find the weight of the car in Newtons. (-13368 N)
13. A 175 lb hockey player is traveling at $\mathbf{2 2} \mathbf{~ m p h}$ and comes to a stop in 1.25 m . Find the force exerted by the ice. (-3076 N)

